Skip to contents

RW1972

## $name
## [1] "alphas"    "betas_on"  "betas_off" "lambdas"  
## 
## $default_value
## [1] 0.4 0.4 0.4 1.0
Name Symbol Description
alphas \(\alpha\) Learning rate for presented stimulus
betas_on, betas_off \(\beta_{on},\beta_{off}\) Intensity of presented and absent target
lambdas \(\lambda\) Maximum learning supported by target

MAC1975

model_parameters("MAC1975")
## $name
## [1] "alphas"     "min_alphas" "max_alphas" "betas_on"   "betas_off" 
## [6] "lambdas"    "thetas"     "gammas"    
## 
## $default_value
## [1] 0.4 0.1 1.0 0.4 0.4 1.0 0.2 0.3
Name Symbol Description
alphas \(\alpha\) Starting associability (learning rate) for presented stimulus
min_alphas, max_alphas \(\alpha_{min}, \alpha_{max}\) Minimum and maximum associability for stimulus
betas_on, betas_off \(\beta_{on},\beta_{off}\) Intensity of presented and absent target
lambdas \(\lambda\) Maximum learning supported by target
thetas \(\theta\) Attentional learning rate parameter for stimulus
gammas \(\gamma\) Attentional learning weight for stimulus

PKH1982

model_parameters("PKH1982")
## $name
## [1] "alphas"     "min_alphas" "max_alphas" "betas_ex"   "betas_in"  
## [6] "lambdas"    "thetas"     "gammas"    
## 
## $default_value
## [1] 0.4 0.1 1.0 0.4 0.3 1.0 1.0 0.3
Name Symbol Description
alphas \(\alpha\) Learning rate for presented stimulus
min_alphas, max_alphas \(\alpha_{min}, \alpha_{max}\) Minimum and maximum associability for stimulus
betas_in, betas_ex \(\beta_{in},\beta_{ex}\) Learning rates for inhibitory and excitatory associations
lambdas \(\lambda\) Maximum learning supported by target
thetas \(\theta\) Decay/strengthening associability rate parameter for stimulus
gammas \(\gamma\) Attentional learning weight for stimulus

SM2007

## $name
## [1] "alphas"  "lambdas" "omegas"  "rhos"    "gammas"  "taus"    "order"  
## 
## $default_value
## [1] 0.4 1.0 0.2 1.0 1.0 0.2 1.0
Name Symbol Description
alphas \(\alpha\) Learning rate for presented stimulus
lambdas \(\lambda\) Maximum learning supported by target
omegas \(\omega\) Weaking rate for presented stimulus
rhos \(\rho\) Salience contribution for unconditioned activation of target
gammas \(\gamma\) Contribution of stimulus to comparison process
taus \(\tau\) Learning rate for operator switch
order \(order\) Order for the comparison process

HDI2020/HD2022

model_parameters("HDI2020")
## $name
## [1] "alphas"
## 
## $default_value
## [1] 0.4
## $name
## [1] "alphas"
## 
## $default_value
## [1] 0.4
Name Symbol Description
alphas \(\alpha\) Learning rate for presented stimulus

TD

## $name
## [1] "alphas"    "betas_on"  "betas_off" "lambdas"   "gamma"     "sigma"    
## 
## $default_value
## [1] 0.05 0.40 0.40 1.00 0.95 0.90
Name Symbol Description
alphas \(\alpha\) Learning rate for presented stimulus
betas_on, betas_off \(\beta_{on},\beta_{off}\) Intensity of presented and absent target
lambdas \(\lambda\) Maximum learning supported by target
gamma \(\gamma\) Temporal discount parameter
sigma \(\sigma\) Rate of decay for eligibility traces

ANCCR

## $name
##  [1] "reward_magnitude"  "betas"             "cost"             
##  [4] "temperature"       "threshold"         "k"                
##  [7] "w"                 "minimum_rate"      "sampling_interval"
## [10] "use_exact_mean"    "t_ratio"           "t_constant"       
## [13] "alpha"             "alpha_reward"      "use_timed_alpha"  
## [16] "alpha_exponent"    "alpha_init"        "alpha_min"        
## [19] "add_beta"          "jitter"           
## 
## $default_value
##  [1] 1.000 1.000 0.000 1.000 0.600 1.000 0.500 0.001 0.200 0.000 1.200    NA
## [13] 0.020 0.200 0.000 1.000 1.000 0.000 0.000 1.000
Name Symbol Description
reward_magnitude \(CW_{j,j}\) Reward magnitude for target
betas \(\beta\) Unconditional value for target
cost \(cost\) Response cost
temperature \(temperature\) Temperature for softmax function
threshold \(\theta\) Threshold to become meaningful causal target/putative cause
k,alpha,alpha_reward \(k,\alpha,\alpha_{reward}\) Learning rates for predecessor representation, predecessor representation contingency, and causal weights.
w \(w\) Weight for net contingency computation
minimum_rate \(minimum\_rate\) Lower bound on perceivable event rates
sampling_interval \(sampling\_interval\) Time interval to update base rate calculations
use_exact_mean \(use\_exact\_mean\) Whether to use exact mean calculations for \(\alpha\)
t_ratio \(t\_ratio\) Ratio to calculate time constant
use_timed_alpha \(use\_timed\_alpha\) Whether to use exponential decay for \(\alpha\)
alpha_exponent, alpha_init, alpha_min \(alpha\_exponent,alpha\_init, alpha\_min\) Parameters for exponential decay of \(\alpha\)
add_beta \(add\_beta\) Whether to add \(\beta\) to dopaminergic activity
jitter \(jitter\) Magnitude of perceptual noise for simultaneous events

RAND

## $name
## [1] "alphas"
## 
## $default_value
## [1] 0.4
Name Symbol Description
alphas \(\alpha\) Placeholder; no meaning.