Your first simulation
To perform your first simulation you will need:
- A
data.frame
specifying the experiment design, and - A list with the parameters for the model you will be using.
The design data.frame
Let’s specify a blocking design.
library(calmr)
my_blocking <- data.frame(
Group = c("Exp", "Control"),
Phase1 = c("10A(US)", "10C(US)"),
R1 = c(FALSE, FALSE),
Phase2 = c("10AB(US)", "10AB(US)"),
R2 = c(FALSE, FALSE),
Test = c("1#A/1#B", "1#A/1#B"),
R3 = c(FALSE, FALSE)
)
# parsing the design and showing the original and what was detected
parsed <- parse_design(my_blocking)
parsed
A few rules about the design data.frame:
- Each row represents a group.
- The first column contains the group labels.
- The remaining columns are organized in pairs (trials in a phase, and whether to randomize them)
The trials in each phase column are specified using a very rigid notation. A few observations about it:
- Trials are preceded by a number. That number represents the number of times that trial will be given in each phase. “10A(US)” means that the “A(US)” trial will be given 10 times.
- The presence and absence of the unconditioned stimulus are not denoted with the traditional “+” and “-” symbols. Instead, here we use parenthesis to denote “complex” stimuli. These can be thought of as an element with a complex name (i.e., with more than one character). As such, “(US)” specifies a single element to represent the US.
- In the same vein, multiple characters with no parentheses denote individual elements. For example, “AB” implies the presence of two stimuli, A and B.
- The “/” character is used as a trial separator (it does not imply randomization by itself). Thus, “1A/1B” specifies that a single “A” trial and a single “B” trial will be given during that phase. Recall that randomization of trials within a phase is specified by the column after it (above, R1, R2, and R3).
- The “#” character is used to denote probe trials. In contrast to real life, probe trials here entail no update of the model’s associations. As such, probe trials can be used to track the development of key associations, with no repercussion to what the model learns on normal training trials.
If you want to check whether your phase string will work with the
package, you can use phase_parser()
. The function returns a
list with a lot of information, so let’s print only some of the
fields.
# not specifying the number of AB trials. Error!
phase_parser("AB/10AC")
#> Error in if (is.na(treps)) 1 else treps: argument is of length zero
# putting the probe symbol out of order. Error!
phase_parser("#10A")
#> Error in if (is.na(treps)) 1 else treps: argument is of length zero
# considering a configural cue for elements AB
trial <- phase_parser("10AB(AB)(US)")
# different USs
trial <- phase_parser("10A(US1)/10B(US2)")
# tons of information! Phase parser is meant for internal use only.
# you are better of using `parse_design()` on a design `data.frame`
str(trial)
#> List of 2
#> $ trial_info :List of 2
#> ..$ 10A(US1):List of 8
#> .. ..$ name : chr "A(US1)"
#> .. ..$ repetitions : num 10
#> .. ..$ is_test : logi FALSE
#> .. ..$ periods : chr "A(US1)"
#> .. ..$ nominals :List of 1
#> .. .. ..$ A(US1): chr [1:2] "A" "US1"
#> .. ..$ functionals :List of 1
#> .. .. ..$ A(US1): chr [1:2] "A" "US1"
#> .. ..$ all_nominals : chr [1:2] "A" "US1"
#> .. ..$ all_functionals: chr [1:2] "A" "US1"
#> ..$ 10B(US2):List of 8
#> .. ..$ name : chr "B(US2)"
#> .. ..$ repetitions : num 10
#> .. ..$ is_test : logi FALSE
#> .. ..$ periods : chr "B(US2)"
#> .. ..$ nominals :List of 1
#> .. .. ..$ B(US2): chr [1:2] "B" "US2"
#> .. ..$ functionals :List of 1
#> .. .. ..$ B(US2): chr [1:2] "B" "US2"
#> .. ..$ all_nominals : chr [1:2] "B" "US2"
#> .. ..$ all_functionals: chr [1:2] "B" "US2"
#> $ general_info:List of 5
#> ..$ trial_names : chr [1:2] "A(US1)" "B(US2)"
#> ..$ trial_repeats: num [1:2] 10 10
#> ..$ is_test : logi [1:2] FALSE FALSE
#> ..$ nomi2func : Named chr [1:4] "A" "US1" "B" "US2"
#> .. ..- attr(*, "names")= chr [1:4] "A" "US1" "B" "US2"
#> ..$ func2nomi : Named chr [1:4] "A" "US1" "B" "US2"
#> .. ..- attr(*, "names")= chr [1:4] "A" "US1" "B" "US2"
The parameters list
Now we need to pick a model and its parameters.
To get the models currently supported in calmr
, you can
call supported_models()
.
supported_models()
#> [1] "HDI2020" "HD2022" "RW1972" "MAC1975" "PKH1982" "SM2007" "RAND"
#> [8] "ANCCR" "TD"
After choosing a model, you can get default parameters for your
design with get_parameters()
.
my_pars <- get_parameters(my_blocking, model = "RW1972")
# Increasing the beta parameter for US presentations
my_pars$betas_on["US"] <- .6
my_pars
#> $alphas
#> A B C US
#> 0.4 0.4 0.4 0.4
#>
#> $betas_on
#> A B C US
#> 0.4 0.4 0.4 0.6
#>
#> $betas_off
#> A B C US
#> 0.4 0.4 0.4 0.4
#>
#> $lambdas
#> A B C US
#> 1 1 1 1
Simulating
With all of the above, we can run our simulation using the
run_experiment()
function. This function also takes extra
arguments to manipulate the number of iterations to run the experiment
for, and whether to organize trials in miniblocks (see the help page for
make_experiment()
for additional details). Below, we run
the experiment for 5 iterations.
my_experiment <- run_experiment(
my_blocking, # note we do not need to pass the parsed design
model = "RW1972",
parameters = my_pars,
iterations = 5
)
# returns a `CalmrExperiment` object
class(my_experiment)
#> [1] "CalmrExperiment"
#> attr(,"package")
#> [1] "calmr"
# CalmrExperiment is an S4 class, so it has slots
slotNames(my_experiment)
#> [1] "design" "model" "groups" "parameters" "timings"
#> [6] "experiences" "results" ".model" ".group" ".iter"
# the experience given to group Exp on the first iteration
my_experiment@experiences[[1]]
#> model group phase tp tn is_test block_size trial
#> 1 RW1972 Exp Phase1 1 A(US) FALSE 1 1
#> 2 RW1972 Exp Phase1 1 A(US) FALSE 1 2
#> 3 RW1972 Exp Phase1 1 A(US) FALSE 1 3
#> 4 RW1972 Exp Phase1 1 A(US) FALSE 1 4
#> 5 RW1972 Exp Phase1 1 A(US) FALSE 1 5
#> 6 RW1972 Exp Phase1 1 A(US) FALSE 1 6
#> 7 RW1972 Exp Phase1 1 A(US) FALSE 1 7
#> 8 RW1972 Exp Phase1 1 A(US) FALSE 1 8
#> 9 RW1972 Exp Phase1 1 A(US) FALSE 1 9
#> 10 RW1972 Exp Phase1 1 A(US) FALSE 1 10
#> 11 RW1972 Exp Phase2 2 AB(US) FALSE 1 11
#> 12 RW1972 Exp Phase2 2 AB(US) FALSE 1 12
#> 13 RW1972 Exp Phase2 2 AB(US) FALSE 1 13
#> 14 RW1972 Exp Phase2 2 AB(US) FALSE 1 14
#> 15 RW1972 Exp Phase2 2 AB(US) FALSE 1 15
#> 16 RW1972 Exp Phase2 2 AB(US) FALSE 1 16
#> 17 RW1972 Exp Phase2 2 AB(US) FALSE 1 17
#> 18 RW1972 Exp Phase2 2 AB(US) FALSE 1 18
#> 19 RW1972 Exp Phase2 2 AB(US) FALSE 1 19
#> 20 RW1972 Exp Phase2 2 AB(US) FALSE 1 20
#> 21 RW1972 Exp Test 3 #A TRUE 2 21
#> 22 RW1972 Exp Test 4 #B TRUE 2 22
# the number of times we ran the model (groups x iterations)
length(experiences(my_experiment))
#> [1] 10
# an experiment has results with different levels of aggregation
class(my_experiment@results)
#> [1] "CalmrExperimentResult"
#> attr(,"package")
#> [1] "calmr"
slotNames(my_experiment@results)
#> [1] "aggregated_results" "parsed_results" "raw_results"
# shorthand method to access aggregated_results
results(my_experiment)
#> $associations
#> group phase trial_type trial block_size s1 s2 value model
#> <char> <char> <char> <int> <num> <char> <char> <num> <char>
#> 1: Exp Phase1 A(US) 1 1 A A 0.0000000 RW1972
#> 2: Exp Phase1 A(US) 1 1 A B 0.0000000 RW1972
#> 3: Exp Phase1 A(US) 1 1 A C 0.0000000 RW1972
#> 4: Exp Phase1 A(US) 1 1 A US 0.0000000 RW1972
#> 5: Exp Phase1 A(US) 1 1 B A 0.0000000 RW1972
#> ---
#> 700: Control Test #B 22 2 C US 0.9939534 RW1972
#> 701: Control Test #B 22 2 US A 0.4999999 RW1972
#> 702: Control Test #B 22 2 US B 0.4999999 RW1972
#> 703: Control Test #B 22 2 US C 0.6626356 RW1972
#> 704: Control Test #B 22 2 US US 0.0000000 RW1972
#>
#> $responses
#> group phase trial_type trial block_size s1 s2 value model
#> <char> <char> <char> <int> <num> <char> <char> <num> <char>
#> 1: Exp Phase1 A(US) 1 1 A A 0 RW1972
#> 2: Exp Phase1 A(US) 1 1 A B 0 RW1972
#> 3: Exp Phase1 A(US) 1 1 A C 0 RW1972
#> 4: Exp Phase1 A(US) 1 1 A US 0 RW1972
#> 5: Exp Phase1 A(US) 1 1 B A 0 RW1972
#> ---
#> 700: Control Test #B 22 2 C US 0 RW1972
#> 701: Control Test #B 22 2 US A 0 RW1972
#> 702: Control Test #B 22 2 US B 0 RW1972
#> 703: Control Test #B 22 2 US C 0 RW1972
#> 704: Control Test #B 22 2 US US 0 RW1972
If you are an advanced R user you will be able to dig into the data straight away. However, the package also includes some methods to get a quick look at the results.
Plotting
Let’s use plot
method to create some plots. Each model
supports different types of plots according to the results they can
produce (e.g., associations, responses, saliences, etc.)
# get all the plots for the experiment
plots <- plot(my_experiment)
names(plots)
#> [1] "Exp - Association Strength (RW1972)"
#> [2] "Control - Association Strength (RW1972)"
#> [3] "Exp - Response Strength (RW1972)"
#> [4] "Control - Response Strength (RW1972)"
# or get a specific type of plot
specific_plot <- plot(my_experiment, type = "associations")
names(specific_plot)
#> [1] "Exp - Association Strength (RW1972)"
#> [2] "Control - Association Strength (RW1972)"
# show which plots are supported by the model we are using
supported_plots("RW1972")
#> [1] "associations" "responses"
In this case, the RW model supports both associations (associations) and responses (responses).
Stimulus associations
The columns in the plots below are the phases of the design and the rows denote the source of the association.
The colors within each panel determine the target of the association.
plot(my_experiment, type = "associations")
#> $`Exp - Association Strength (RW1972)`
#>
#> $`Control - Association Strength (RW1972)`
Responding
Fairly similar to the above, but responding is a function of the stimuli presented in each trial.
plot(my_experiment, type = "responses")
#> $`Exp - Response Strength (RW1972)`
#>
#> $`Control - Response Strength (RW1972)`
Graphing
You can also take a look at the state of the model’s associations at
any point during training, using the graph
method in your
experiment.
my_graph_opts <- get_graph_opts("small")
# passing the argument t to specify the trial we're interested in.
# end of acquisition
patch_graphs(graph(my_experiment, t = 10, options = my_graph_opts))
# end of blocking
patch_graphs(graph(my_experiment, t = 20, options = my_graph_opts))